Содержание
Иониза́ция — эндотермический процесс образования ионов из нейтральных атомов или молекул.
Положительно заряженный ион образуется, если электрон в молекуле получает достаточную энергию для преодоления потенциального барьера, равную ионизационному потенциалу. Отрицательно заряженный ион, наоборот, образуется при захвате дополнительного электрона атомом с высвобождением энергии.
Принято различать ионизацию двух типов — последовательную (классическую) и квантовую, не подчиняющуюся некоторым законам классической физики.
Содержание
Классическая ионизация [ править | править код ]
Аэроионы, кроме того, что они бывают положительными и отрицательными, разделяются на лёгкие, средние и тяжёлые ионы. В свободном виде (при атмосферном давлении) электрон существует не более, чем 10 −7 — 10 −8 секунды.
Ионизация в электролитах [ править | править код ]
Электролиты — вещества, растворённые в воде. К электролитам относятся растворимые соли, кислоты, гидроксиды металлов. В процессе растворения молекулы электролитов распадаются на катионы и анионы. Фарадей, полагаясь на данные, полученные из экспериментов с электролизом, вывел формулу о пропорциональности массы m к заряду Δq, который прошёл через электролит, или о пропорциональности массы m к силе тока I и времени Δt: m = k ⋅ Δ q = k ⋅ I ⋅ Δ t <displaystyle m=kcdot Delta q=kcdot Icdot Delta t> .
Ионизация в газах [ править | править код ]
Газы по большей мере состоят из нейтральных молекул. Однако если часть молекул газов ионизируется, газ проводит электрический ток. Есть два основных способа ионизации в газах:
- Термическая ионизация — ионизация, при которой необходимую энергию для отрыва электрона от атома дают столкновения между атомами вследствие повышения температуры;
- Ионизация электрическим полем — ионизация вследствие повышения значения напряжения внутреннего электрического поля выше предельного значения. Из этого следует отрыв электронов от атомов газа.
- Ионизация ионизирующим излучением
Квантовая ионизация [ править | править код ]
В 1887 году Генрих Герц установил, что под действием света из тела могут вырываться электроны — было открыто явление фотоэффекта. Это не согласовывалось с волновой теорией света — она не смогла объяснить законы фотоэффекта и наблюдаемое разделение энергии в спектре электромагнитного излучения. В 1900 году Макс Планк установил, что тело может поглощать или испускать электромагнитную энергию только специальными порциями, квантами. Это дало теоретическую основу для объяснения явлений фотоэффекта. Чтобы объяснить явления фотоэффекта, в 1905 году Альберт Эйнштейн выдвинул гипотезу про существование фотонов как частиц света, что позволяет объяснить квантовую теорию — фотоны, которые способны поглощаться или излучаться как целое одним электроном, придают ему достаточную кинетическую энергию для преодоления силы тяготения электрона к ядру — возникает квантовая ионизация.
Методы ионизации [ править | править код ]
Методы, использующиеся для ионизации проводящих материалов:
Искровая ионизация: за счёт разницы потенциалов между кусочком исследуемого материала и другим электродом возникает искра, вырывающая с поверхности мишени ионы.
Ионизация в тлеющем разряде происходит в разрежённой атмосфере инертного газа (например, в аргоне) между электродом и проводящим кусочком образца.
Ударная ионизация. Если какая-либо частица с массой m (электрон, ион или нейтральная молекула), летящая со скоростью V, столкнётся с нейтральным атомом или молекулой, то кинетическая энергия летящей частицы может быть затрачена на совершение акта ионизации, если эта кинетическая энергия не меньше энергии ионизации.
Ионизация газа показывает, что в газах под влиянием высокой температуры и различных излучений появляются заряженные частицы. Они возникают потому, что от атомов газа отщепляется один или несколько электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными
атомами, и тогда появятся еще и отрицательные ионы.
Газы в естественном состоянии не проводят электричества. Если поместить в сухом атмосферном воздухе хорошо изолированное заряженное тело, например заряженный электрометр с хорошей изоляцией, то заряд электрометра долгое время практически остается неизменным.
Однако, подвергая газ различным внешним воздействиям, можно вызвать в нем электропроводность. Так, например, помещая вблизи заряженного электрометра пламя горелки, можно видеть, что заряд электрометра быстро уменьшается. Мы сообщили газу электропроводность, создавая в нем высокую температуру. Если бы вместо пламени горелки мы поместили вблизи электрометра подходящий источник света, мы также наблюдали бы утечку зарядов с электрометра.
Ионизация газов
Отрыв электрона от атома (ионизация газа) требует затраты определенной энергии – энергии ионизации. Она зависит от строения атома и поэтому различна для разных
веществ.
После прекращения действия ионизатора число ионов в газе с течением времени уменьшается и конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они воссоединяются в нейтральный атом. Точно так же при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба они превратятся в нейтральные атомы. Это процесс взаимной ионизации ионов называется рекомбинацией ионов.
При рекомбинации положительного иона и электрона или двух ионов высвобождается определенная энергия, равная энергии, затраченной на ионизацию. Она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации). Если концентрация положительных и отрицательных ионов велика, то и число ежесекундно происходящих актов рекомбинации будет большим, и свечение рекомбинации может быть очень сильным. Излучение света при рекомбинации является одной из причин свечения многих форм газового разряда.
Способы ионизации газов
В обычных условиях газы являются хорошими диэлектриками.
Электрические свойства газов связаны в первую очередь с ионизацией молекул или атомов.
Способы ионизации молекул и атомов:
1. Нагревание. При температурах начиная с нескольких тыс. градусов всякий газ частично ионизуется и превращается в плазму. Плазма это полностью или частично ионизированный газ.
2. Воздействие электромагнитного излучения:
3. Воздействие заряженных частиц: альфа-, бета-частиц, космического излучения.
4. Электронный удар
При электрическом разряде движущийся электрон соударяется с нейтральным атомами и выбивает из них него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны.
5. Захват электронов. При ионизации часть образовавшихся электронов может быть захвачена другими нейтральными атомами, и тогда появятся еще и отрицательные ионы.
Количественные характеристики ионизации газов
Интенсивность ионизации – число пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени. Ионизация атома требует затраты определенной энергии.
Работа ионизации – работа против сил взаимодействия между вырываемым
электроном и остальными частицами атома (или молекулы).
Ионизация зависит от
1). химической природы газа;
2). энергетического состояния вырываемого электрона в атоме или молекуле.
После прекращения действия ионизатора количество ионов в газе с течением времени уменьшается и, в конце концов, ионы исчезают вовсе. Причины – тепловое движение: 1). положительные ионы и электроны соударяются друг с другом и образуют нейтральный атом.
2). отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации освобождается, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).
Механизм электропроводности газов
Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.
Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду. Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.
На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов.
Особенности электропроводности газов
1.В газах отсутствует выделение веществ на электродах (в отличие от электролитов). Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.
2. При прохождении тока через газы заряд переносится в основном электронами (более подвижны). В газах сочетается: электронная проводимость (металлы), с ионной проводимостью (растворы и расплавы электролитов).
Электрический разряд в газах
Газовый разряд – процесс прохождения электрического тока через газ. Существует множество видов электрического разряда в газе. Вид газового разряда обусловлен:
.исходным состоянием газа (состав, давление и т. д.),
.внешним воздействием на газ,
.формой, материалом и расположением электродов,
.геометрией возникающего в газе электрического поля и т. п.
Законы прохождения электрического тока в газе сложнее, чем в металлах и электролитах.
Несамостоятельный газовый разряд – разряд при котором электропроводность газа создается внешними ионизаторами.
Самостоятельный газовый разряд – разряд, сохраняющийся после прекращения действия внешнего ионизатора.
Типы самостоятельного разряда
В зависимости от свойств и состояния газа, характера и расположения
электродов, а также от приложенного к электродам напряжения возникают
различные виды самостоятельного разряда:
1.Тлеющий разряд. 2.Коронный разряд. 3.Искровой разряд. 4.Дуговой разряд. 5.Плазма.