Содержание
Инструкция . При вводе с клавиатуры используйте следующие обозначения:
Клавиша | Оператор | |
---|---|---|
! | ¬ | Отрицание (НЕ) |
| | | | Штрих Шеффера (И-НЕ) |
# | ↓ | Стрелка Пирса (ИЛИ-НЕ) |
* | & | Конъюнкция (И) |
+ | v | Дизъюнкция (ИЛИ) |
^ | ⊕ | Исключающее ИЛИ, сумма по модулю 2 (XOR) |
@ | → | Импликация (ЕСЛИ-ТО) |
% | ← | Обратная импликация |
= | ≡ ( |
, ↔)
bc необходимо ввести так: a*b*c+a*b=c+a=b*c
Для ввода данных в виде логической схемы используйте этот сервис.
Правила ввода логической функции
- Вместо символа v (дизъюнкция, ИЛИ) используйте знак + .
- Перед логической функцией не надо указывать обозначение функции. Например, вместо F(x,y)=(x|y)=(x^y) необходимо ввести просто (x|y)=(x^y) .
- Максимальное количество переменных равно 10 .
Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении. Если число высказываний в логическом выражении N, то таблица истинности будет содержать 2 N строк, так как существует 2 N различных комбинаций возможных значений аргументов.
Сегодня мы поговорим о предмете под названием информатика. Таблица истинности, разновидности функций, порядок их выполнения – это наши основные вопросы, на которые мы постараемся найти ответы в статье.
Обычно данный курс преподается еще в средней школе, но большое количество учеников является причиной недопонимания некоторых особенностей. А если вы собрались посвятить этому свою жизнь, то просто не обойтись без сдачи единого государственного экзамена по информатике. Таблица истинности, преобразование сложных выражений, решение логических задач – это все может встретиться в билете. Сейчас мы рассмотрим более подробно данную тему и поможем вам набрать больше балов на ЕГЭ.
Предмет логики
Что же это за предмет – информатика? Таблица истинности – как ее строить? Зачем нужна наука логика? На все эти вопросы мы сейчас с вами ответим.
Информатика – это довольно увлекательный предмет. Он не может вызывать затруднения у современного общества, ведь все, что нас окружает, так или иначе, относится к компьютеру.
Основы науки логики даются преподавателями средней школы на уроках информатики. Таблицы истинности, функции, упрощение выражений – все это должны объяснять учителя информатики. Эта наука просто необходима в нашей жизни. Приглядитесь, все подчиняется каким-либо законам. Вы подбросили мяч, он подлетел вверх, но после этого упал опять на землю, это произошло из-за наличия законов физики и силы земного притяжения. Мама варит суп и добавляет соль. Почему когда мы его едим, нам не попадаются крупинки? Все просто, соль растворилась в воде, подчиняясь законам химии.
Теперь обратите внимание на то, как вы разговариваете.
- «Если я отвезу своего кота в ветеринарную клинику, то ему сделают прививку».
- «Сегодня был очень тяжелый день, потому что приходила проверка».
- «Я не хочу идти в университет, потому что сегодня будет коллоквиум» и так далее.
Все, что вы говорите, обязательно подчиняется законам логики. Это относится как к деловой, так и к дружеской беседе. Именно по этой причине необходимо понимать законы логики, чтобы не действовать наугад, а быть уверенным в исходе событий.
Функции
Для того чтобы составить таблицу истинности к предложенной вам задаче, необходимо знать логические функции. Что это такое? Логическая функция имеет некоторые переменные, которые являются утверждениями (истинными или ложными), и само значение функции должно дать нам ответ на вопрос: «Выражение истинно или ложно?».
Все выражения принимают следующие значения:
- Истина или ложь.
- И или Л.
- 1 или 0.
- Плюс или минус.
Здесь отдавайте предпочтение тому способу, который для вас является более удобным. Для того чтобы составить таблицу истинности, нам нужно перечислить все комбинации переменных. Их количество вычисляется по формуле: 2 в степени n. Результат вычисления – это количество возможных комбинаций, переменной n в данной формуле обозначается количество переменных в условии. Если выражение имеет много переменных, то можно воспользоваться калькулятором или сделать для себя небольшую таблицу с возведением двойки в степень.
Всего в логике выделяют семь функций или связей, соединяющих выражения:
- Умножение (конъюнкция).
- Сложение (дизъюнкция).
- Следствие (импликация).
- Эквиваленция.
- Инверсия.
- Штрих Шеффера.
- Стрелка Пирса.
Первая операция, представленная в списке, имеет название «логическое умножение». Ее графически можно отметить в виде перевернутой галочки, знаками & или *. Вторая в нашем списке операция – логическое сложение, графически обозначается в виде галочки, +. Импликацию называют логическим следствием, обозначается в виде стрелки, указывающей от условия на следствие. Эквиваленция обозначается двухсторонней стрелкой, функция имеет истинное значение только в тех случаях, кода оба значения принимают либо значение «1», либо «0». Инверсию называют логическим отрицанием. Штрих Шеффера называют функцией, которая отрицает конъюнкцию, а стрелку Пирса – функцией, отрицающей дизъюнкцию.
Основные двоичные функции
Логическая таблица истинности помогает найти ответ в задаче, но для этого необходимо запомнить таблицы двоичных функций. В этом разделе они будут предоставлены.
Конъюнкция (умножение). Если два выражения истинны, то в результате мы получаем истину, во всех остальных случаях мы получаем ложь.
Логическая функция – функция, переменные которой принимают одно из двух значений: $1$ или $0$.
Любую логическую функцию можно задать с помощью таблицы истинности: набор всех возможных аргументов записывается в левой части таблицы, а соответствующие значения логической функции – в правой части.
Таблица истинности – таблица, которая показывает, какие значения примет составное выражение при всех возможных наборах значений простых выражений, входящих в него.
Равносильными называются логические выражения, последние столбцы таблиц истинности которых совпадают. Равносильность обозначается с помощью знака $«=»$.
При составлении таблицы истинности важно учитывать следующий порядок выполнения логических операций:
Приоритетом в выполнении порядка выполнения операций пользуются скобки.
Алгоритм построения таблицы истинности логической функции
Определяют количество строк: кол-во строк = $2^n + 1$ (для строки заголовка), $n$ – количество простых выражений. Например, для функций двух переменных существует $2^2 = 4$ комбинации наборов значений переменных, для функций трех переменных – $2^3 = 8$ и т.д.
Определяют количество столбцов: кол-во столбцов = кол-во переменных + кол-во логических операций. При определении количества логических операций учитывают также порядок их выполнения.
Заполняют столбцы результатами выполнения логических операций в определенной последовательности, учитывая таблицы истинности основных логических операций.
Попробуй обратиться за помощью к преподавателям
Составить таблицу истинности логического выражения $D=ar vee (B vee C)$.
Решение:
Определим количество строк:
Количество простых выражений – $n=3$, значит
кол-во строк = $2^3 + 1=9$.
Определим количество столбцов:
Количество переменных – $3$.
Количество логических операций и их последовательность:
Кол-во столбцов = $3 + 3=6$.
Заполним таблицу, учитывая таблицы истинности логических операций.
Задай вопрос специалистам и получи
ответ уже через 15 минут!
По данному логическому выражению построить таблицу истинности:
Решение:
Определим количество строк:
Количество простых выражений – $n=3$, значит
кол-во строк = $2^3 + 1=9$.
Определим количество столбцов:
Количество переменных – $3$.
Количество логических операций и их последовательность:
- отрицание ($ar
$); - дизъюнкция, т.к. она находится в скобках ($A vee B$);
- конъюнкция ($(Avee B)igwedge overline
$); - отрицание, которое обозначим $F_1$ ($overline<(Avee B)igwedge overline
>$); - дизъюнкция ($A vee C$);
- конъюнкция ($(Avee C)igwedge B$);
- отрицание, которое обозначим $F_2$ ($overline<(Avee C)igwedge B>$);
Кол-во столбцов = $3 + 8 = 11$.
Заполним таблицу, учитывая таблицу истинности логических операций.
Алгоритм построения логической функции по ее таблице истинности
- Выделяют в таблице истинности строки со значением функции, равным $1$.
- Выписывают искомую формулу как дизъюнкцию нескольких логических выражений. Количество этих выражений равно количеству выделенных строк.
- Каждое логическое выражение в этой дизъюнкции записать как конъюнкцию аргументов функции.
- В случае, когда значение какого-то из аргументов функции в соответствующей строке таблицы принимает значение $0$, то этот аргумент записать в виде его отрицания.
По данной таблице истинности некоторой логической функции $Y(A,B)$ cоставить соответствующую логическую функцию.
Решение:
- Значение функции равно $1$ в $1$-й и $3$-й строках таблицы.
- Поскольку имеем $2$ строки, получим дизъюнкцию двух элементов:
ight)vee left(Awedge B
ight)$
ight)=left(overlinewedge overline
ight)vee left(Awedge overline
ight).]
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь